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Abstract 

Calorimetric properties of potassium dihydrogen phosphate are examined by analysis of the 
heat capacity data taken from the literature and from a recent measurement. The analysis is 
based on an extensive use of harmonic heat capacity functions to separate the effect of the phase 
transition from the vibrational contribution. The transition enthalpy and entropy derived are 
421 J mo1-1 and 3.79 J K -l mol -I, respectively. Characteristic temperatures of the lattice vibra- 
tions including the Debye temperature (254+18) K were determined. The transition entropy, ex- 
ceeding the value compatible with the ice-rules, is consistent with the temperature dependence 
of the heat capacity. The implication of the result is discussed by comparison with the hydrogen 
bond networks in copper formate tetrahydrate and thallium dihydrogen phosphate. 

Keywords: ferroelectricity, hydrogen bond, ice rules, potassium dihydrogen phosphate, transi- 
tion entropy 

Introduction 

Potassium dihydrogen phosphate KDP is one of the earliest crystals identi- 
fied as a ferroelectric [1]. It has been extensively studied experimentally and 
theoretically. There are still unsolved problems concerning the ferroelectricity 
and ferroelectric transition of this substance, even though practically every 
newly-available experimental method has been employed to examine its proper- 
ties. Among the experimental techniques employed are calorimetry, X-ray 
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diffraction, dielectric permittivity and polarization measurement, IR and 
Raman spectroscopies, nuclear magnetic resonance and neutron diffraction and 
scattering. Usually one experimental method focuses on one aspect of the prop- 
erties of the substance. Consequently, a model conceived to explain one 
experimental observation may be inadequate when examined from other points 
of view. The difficulty may be serious or easily explained away. 

The transition entropy is one of the less frequently quoted experimental 
quantities though it is an important property that connects structural and ener- 
getic aspects of the phase transition. An accurately evaluated transition entropy 
can be a significant test of models for the phase transition. 

Stephenson and Hooley [2] measured the heat capacity of KDP between 13 
and 300 K in a series of calorimetric studies on hydrogen bonded crystals. A 
conclusion they arrived at was that the transition entropy is about 3 J K -1 mo1-1. 
This is significant because the experimental transition entropy is much smaller 
than the largest possible value 2R In2 = 11.6 J K -1 mol -~ predicted by statistical 
independence of all of the hydrogen bonds in the crystal. Slater [3] proposed a 
model of the phase transition taking into account the short range correlation be- 
tween the hydrogen bonds. He assumed that the four hydrogen bonds of a 
phosphate ion are correlated in such a way that just two of them have the hydro- 
gen atom close to the phosphate ion. In this model the phosphate ions are always 
(H2PO4)- in the disordered high temperature phase and, a fortiori, in the low 
temperature phase as well. This correlation restricts the number of the allowed 
configurations of the hydrogen bonded system. He showed that the number of 
allowed configurations at T ~  is equal to w = (3/2) N where N is the number of 
the phosphate ions. This calculation is the same as that used by Pauling [4] in 
the explanation of the residual entropy of ice Ih [5, 6]. It assumes that (1) a hy- 
drogen bond provides a double minimum potential for a proton, (2) a hydrogen 
bond is occupied by one and only one proton, (3) a phosphate ion is engaged in 
four hydrogen bonds and (4) two of the four protons on the four hydrogen bonds 
extending from a phosphate ion lie in the closer and the other two in the farther 
of the minima. The ice-rules calculation was extended by Nagle [7] who found 
that the higher order terms contribute only a small correction term: 1.504 N < W 
< 1.506 N. The transition entropy of the Slater model is equal to (R 1n2)/2 = 2.88 
J K -~ mo1-1. The experimental value 2.9-3.1 J K -1 mol -~ of Stephenson and 
Hooley is closer to this rather than R 1n(3/2)=3.37 J K -1 mol- 'expected at 
T ~  though the difference is small. The model was generalized by Takagi [8] 
to include ionized phosphate ions. 

Although the calorimetric data give support to the Slater model, its signifi- 
cance to the mechanism of the phase transition has not been appreciated in more 
recent work. There may be two reasons for this. First, the ice-rules correlation 
is difficult to incorporate in the interpretation of spectroscopic experiments with 
which the majority of recent experimental work is concerned. Most of the spec- 
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troscopic experiments have been explained as a dynamic response of a single 
hydrogen atom embedded in the environment of phosphate and potassium ions. 
Second, the experimentalvalue of the transition entropy was determined on an 
assumption about the value of the vibrational heat capacity. The assumption ap- 
pears rather arbitrary, being simply a linear interpolation of the high and low 
temperature heat capacities into the transition region [2]. Since the excess part 
is a small fraction of the total heat capacity in the pre-transition region, a small 
change in the assumed interpolation results in a significant variation of the en- 
tropy of transition. 

In the present paper, we report a new measurement of the heat capacity in 
the transition region. Stephenson and Hooley's data were reproduced well. We 
show that an estimation of the vibrational heat capacity based on least squares 
adjustment of the vibrational characteristic temperatures gives a different tran- 
sition entropy from the original value. The calculation of the vibrational heat 
capacity involves extensive use of the heat capacity function for harmonic oscil- 
lators and is closely related to the work of Professor Wunderlich [9] in polymer 
physics. 

Experiment and result 

A sample of KDP was prepared by recrystallization from an aqueous solu- 
tion. The sample mass was 34.1950 g. It was sealed in a gold plated copper 
sample cell of an adiabatic calorimeter [10]. The heat capacity was measured in 
the normal intermittent heating mode in the temperature range between 80 K 
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Fig. 1 The molar heat capacity of  potassium dihydrogen phosphate. Open circles: from [2]. 

Closed circles: the present data. The curve represents the best-fit vibrational heat ca- 
pacity 
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and 130 K. The temperature increment for a single heat capacity determination 
was 1 to 2 K. The inaccuracy of the measurement was estimated to be _+0.2%. 
The results are plotted in Fig. 1 along with Stephenson and Hooley's data. 
Agreement between the two sets of data is excellent. 

Discussion 

The vibrational heat capacity 

At temperatures far away from the transition point, the experimental heat ca- 
pacity contains solely the vibrational contribution. As the transition tempera- 
ture is approached from below, the heat capacity increases gradually as a result 
of gradual disordering. At the transition temperature, the experimental heat ca- 
pacity contains the latent heat of transition. Consequently, the apparent heat ca- 
pacity increases to a large value that depends on the temperature increment 
employed for that particular datum point. However, the entire transition en- 
thalpy and entropy are independent of the temperature steps taken in different 
series of measurements. The same applies for experimental data by different 
authors. Therefore different sets of data are best compared in terms of the tem- 
perature dependence of the enthalpy and entropy. 

The experimental heat capacity contains contributions from the vibrational 
and transitional parts. We assume that they are separable from each other. We 
assume further that the vibrational degrees of freedom are represented as a col- 
lection of harmonic oscillators with a small correction for the difference 
between C-p and Cv. Thus the Ca,(base) is given the following form: 

Cp(base) = C(Deb) + C(Ein, 1) + C(Ein, 2) +a(Cv)2T (1) 

Table 1 Characteristic temperatures used for the calculation of the vibrational heat capacity from 
spectroscopy [11, 12] and the heat capacity (present data) 

Internal vibrations of PO43' (from vibrational spectroscopy) 

Weight Characteristic temp./K 

1 1318 vl 

2 509,529 v2 

3 1463 v3 

3 689, 768 v4 

Lattice vibrations (from heat capacity) 

3 254+18 Debye 

3 129+_5 Einstein 

3 310+19 Einstein 

6 1508_+200 Einstein 

(A--(6+8)E-7 j-t mol, ef. Eq. (2)) 
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In this equation the first term represents the Debye part of the heat capacity and 
the second an Einstein part. These parts involve unknown characteristic tem- 
peratures. The third term contains all the spectroscopically accessible vibra- 
tional degrees of freedom. The last term represents the Cp-Cv correction. The 
unknown characteristic temperatures were determined by least squares fitting of 
Cp(base) to the experimental values outside the transition region. Normal mode 
frequencies from vibrational spectroscopy were used in the calculation of 
C(Ein, 2). They are summarized in Table 1. In the crystal, the degenerate 
modes split because of the lower site symmetries than the symmetry of the free 
phosphate ion. 

In the fitted part, the Debye term C(Deb) contains three degrees of freedom 
and the Einstein term C(Ein,1) twelve. The latter are expressed by three Ein- 
stein functions of 3, 3 and 6 degrees of freedom. The Debye term represents the 
acoustic branch of the lattice vibration. The first two Einstein terms both with 
a weight of 3 are meant to account for the optical branches of the translational 
origin involving the motion of potassium ions and those of the rotational origin 
involving the phosphate ions. The last Einstein term (with a weight of 6) repre- 
sents the motion of the hydrogen atom. The numbers of degrees of freedom 
contained in these terms sum up to 24, three times the number of atoms in a 
chemical unit. 

The experimental heat capacities between 13 and 60 K and those between 200 
and 300 K were employed for the fitting. The result of the fitting are given in Ta- 
ble 1. The base-line heat capacities calculated using the best fit parameter values 
are plotted in Fig. 1. The Debye temperature and two low Einstein temperatures 
are of reasonable values for lattice vibrations of an ionic and hydrogen bonded 
crystals. The highest Einstein temperature (1508+200 K = 1048+140 cm -~= 
130+18 meV) has counterparts in the neutron spectrum at 125, 160 and 160 
meV [13]. In view of the large incoherent cross section of a proton against a 
neutron, these are the hydrogen vibrations parallel and perpendicular to the O-  
O vector connecting adjacent phosphate groups. It is to be noted that the short 
hydrogen bond happens to have the three vibrations (along the x, y and z direc- 
tions) at close frequencies. This made it a good approximation to employ a sin- 
gle characteristic temperature to represent the three vibration of a hydrogen 
atom. It also helped that there are two hydrogen atoms in the chemical unit, be- 
cause of which a large weight was assigned to the hydrogen mode. This allowed 
the characteristic temperature of the high energy mode to be determined with a 
reasonable accuracy from the low temperature heat capacity data. The coeffi- 
cient A (Eq. (1)) may be calculated within quasi-harmonic approximation if all 
of the components of the thermal expansivity and elastic constants are available. 
This has not been done yet. Figure 2 shows the excess heat capacity plotted 
against the temperature. One sees that there does exist a gradual part below the 
transition temperature, but most of the anomaly is confined in a narrow interval 
of about 10 K covering the transition temperature. 
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Fig. 2 The excess heat capacity of potassium dihydrogen phosphate. Open circles: from [2]. 
Closed circles: the present data 

The transition enthalpy and entropy 

Stephenson and Hooley [2] gave in their paper not only the heat capacity val- 
ues but also the temperature increment for each of the datum points. This allows 
us to integrate their heat capacity data numerically by the trapezoidal rule. They 
gave two series of measurements covering the transitional region. These were 
integrated separately. The present experiment gives another set of data. The 
transition entropy was calculated by integration of ACp(T)/T. The result is 
shown in Fig. 3. For the transition enthalpy, the two series of data by Stephen- 
son and Hooley gave 425 and 410 J mo1-1 and the present data 421 J mol -~. The 
transition entropies are 3.83, 3.72 and 3.790 J K -1 mo1-1 for the two series of 
Stephenson and Hooley and for the present measurement. Stephenson and 
Hooley's original estimate of the transition enthalpy is AH=343-380 J tool -1 
and AS = 2.87-3.22 J K -1 tool -1. Both the enthalpy and entropy of transition 
calculated in the present paper are larger than the previous estimate. The pre- 
vious estimate was smaller than the Slater value for T-+~, AS=R 1n(3/2)= 
3.37 J K -1 mo1-1, whereas the present values are larger. 

Mechanism of the ferroelectric transition 

As pointed out in the Introduction, the transition entropy is considerably 
smaller than the 2R In2 = 11.5 J K -I mol -t. The re-analysis of the experimental 
data does not change this conclusion. The entropy value broadly supports the 
Slater model. However, it is substantially larger than the Slater value (R ln2)= 
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Fig. 3 The excess entropy of potassium dihydrogen phosphate. Open circles and plus signs: 
from the analysis of the data from [2]. Closed circles: the present data 

2.88 J K -1 mo1-1. There are also indications that the ice rules may not be strictly 
followed. The transition entropy is 12% larger than the ice rule value. 

We consider next the excess heat capacity below the transition temperature. 
As noted originally by Slater, the excess heat capacity in the low temperature 
phase is strictly zero if we enforce the ice rules strictly. This strong statement 
is related to the topological structure of the hydrogen bond network. If, in a per- 
fectly ordered crystal of KDP, one displaces a proton to the other potential 
minimum of the same hydrogen bond on which the proton is sitting, the original 
phosphate ion is doubly ionized while the one accepting the displaced proton is 
neutralized. Strict application of the ice rules do not allow this to happen. To 
avoid this, the doubly ionized phosphate ion must accept a proton from one of 
the remaining three adjacent phosphate ions. Similarly, the neutralized phos- 
phate ion must get rid of the excess proton to one of the remaining three 
neighbors. This process continues to infinity, separating the pair of the doubly 
ionized phosphate ion and neutral one by an infinite length of a string of dis- 
placed hydrogen bonds. This costs an infinite amount of energy. Therefore there 
can be no local excitation in the low temperature phase. However, there are in- 
finitely many ways of making such string of displaced hydrogen bonds. This 
allows the transition to occur at a finite temperature as it actually does. 

In the heat capacity curves shown in Figs 1 and 2, one finds an excess heat 
capacity in the low temperature phase, well reproduced in the two sets of data, 
as a precursory effect to the transition. From this experimental observation 
alone one has to conclude that there does exist a certain amount of local excita- 

J. Thermal Anal., 46, 1996 



1174 TAKASUKE MATSUO et al.: ICE RULES 

tion in the ordered phase. This in turn shows that the ice rules are not strictly 
obeyed. The magnitude of the excess heat capacity should tell the extent to 
which the ice rules are violated. 

Energy o f  the Takagi States 

Takagi [8] discussed a generalization of the Slater model to include phos- 
phate ions not conforming to the ice rule. We call them the Takagi States. In 
order to evaluate the energy of excitation from the ground "state" to such a 
state, we consider a displaced proton in an ordered crystal. At low enough tem- 
perature, the concentration of the displaced proton should be small so that they 
may be regarded as independent excitations against the background of the or- 
dered state. The heat capacity of this system can be approximated by the 
Schottky anomaly in the low temperature limit. Thus, 

In(T2AC) = Const-  ~/RT (2) 

where e is the energy expended to create a pair of Takagi states. The equation 
shows that when the logarithm of (T2ACp) is plotted vs. 1/T, it should give a 
straight line in the low temperature limit, the slope being equal to e/R. Figure 4 
shows such a plot. The slope of the straight line is equal to 813 K (=6.76 
kJ mol-l). Thus it costs 6.76 kJ to create a mole of HsPOa-HPO4 = pairs in the 
environment of the ordered configuration. It is interesting that the concentration 
of the Takagi states is about 0.2% at the transition temperature. But they still 
influence the heat capacity of the low temperature phase to a considerable ex- 

O 

13 

12 

o 
E 
v 
.--n 

~O 

7, 

10~ 

tent. 

0 
� 9  

I 

.o *o 

9 

I I 
0.009 0.010 0.011 

T-I i K-I 

Fig.  4 Logar i thmic  plot o f  the  excess heat capacity T2AC from which  the  Takagi state en-  
ergy is der ived 

J. Thermal Anal., 46, 1996 



TAKASUKE MATSUO et al.: ICE RULES 1175 

We have thus shown that the transition entropy is larger than the maximum 
value compatible with the ice rules and that the heat capacity of the low tem- 
perature phase contains the contribution from the excitation to non-ice-rule 
states. The two aspects of the Takagi states should be related but the relation has 
not been worked out yet. 

Comparison with other hydrogen bond systems 

If the Takagi state costs a very high energy, it will be completely suppressed 
up to the transition temperature, resulting in a sharp first order transition. This 
actually occurs in copper formate tetrahydrate [14, 15]. In this crystal the ver- 
tex is simply an oxygen atom. Because of the small volume of the vertex, 
ionized states (H30 § and OH-) are at much higher energies than in KDP, and 
thus are not formed to any appreciable concentration at the transition tempera- 
ture of 235 K. 

In thallium dihydrogen phosphate, the hydrogen bond network is different 
from that in KDP. There are three types of them, of which one is symmetric and 
probably disordered [16]. The crystal undergoes a gradual transition at 230 K 
[17]. Difference in the types of thermal excitation is shown by the temperature 
dependence of the entropy plotted in Fig. 5. The entropy in this compound in- 
creases more gradually than in KDP (Fig. 3). This type of behavior is expected 
if each of the disordered hydrogen bonds takes one of the two states and if 
neighboring hydrogen bonds interact with each other through an Ising type 
mechanism without the restriction of the ice rules. The absence of the strong ice 
rules correlation allows localized excitation to occur more gradually than in 
their presence, hence the gradual increase of the entropy as plotted in Fig. 5. 
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Fig. 5 The excess entropy of thallium dihydrogen phosphate [17] 
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The different behavior of the thallium and potassium compounds may be re- 
lated to the difference in the hydrogen bond network and difference in the 
intrinsic properties of the hydrogen bonds themselves such as O-O distance and 
the distance between the two positions of the energy minima on a hydrogen 
bond. 
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